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Abstract: It is indisputable that accurate forecasts of economic activities are vital to successful
business and government policies. In many circumstances, instead of a single forecast, simultaneous
prediction intervals for multiple forecasts are more useful to decision-makers. For example, based on
previous monthly sales records, a production manager would be interested in the next twelve interval
forecasts of the monthly sales using for the annual inventory and manpower planning. For Gaussian
autoregressive time series processes, several procedures for constructing simultaneous prediction inter-
vals have been proposed in the literature. These methods assume a normal error distribution and can
be adversely affected by departures from normality which are commonly encountered in business and
economic time series. In this article, we explore the bootstrap methods for the construction of simul-
taneous multiple interval forecasts. To understand the mechanisms and characteristics of the proposed
bootstrap procedures, several macro-economic time series are selected for illustrative purposes. The
selected series are fitted reasonably well with autoregressive models which form an important class in
time series. As a matter of fact, the major ideas discussed in this paper with autoregressive processes
can be extended to other more complicated time series models.

Keywords: Autoregressive processes; Bootstrap; Simultaneous prediction intervals; Bonferroni in-
equality; AIC

1. INTRODUCTION

Multiple forecasting is often important to busi-
ness planning. It provides projections for L
(L > 1) consecutive future values together with
the confidence intervals around these forecasts.
The prediction intervals portray the optimistic
and pessimistic scenarios of the underlying vari-
able using a probability statement. These infor-
mation are vital to business planning and deci-
sion.

ten computational infeasible for large L. There-
fore, previous research efforts mainly rest on the
formulation of approximate simultaneous pre-
diction intervals [see, for examples, Ravishanker
et al., 1987; Glaz and Ravishanker, 1991; Ravis-
hanker et al., 1991]. Recently, as more advance
algorithm and computational facilities are being
developed, Cheung et al. [1998] introduce an
‘exact method’ to calculate simultaneous pre-
diction intervals directly with reasonable com-

In many applications, we are interested in gen- puting times.

erating simultaneous prediction intervals (i.e., The class of linear Gaussian autoregressive

based on a probability statement about all the
L forecasts simultaneously), rather than a single
forecast. Unfortunately, most time series com-
puter packages do not provide comprehensive
calculations for simultaneous multiple interval
forecasts [see, for example, SAS Institute, 1999).
One of the main reasons is that the construc-
tion of simultaneous prediction intervals often
requires intensive computation related to high-
dimensional integration. In the past, the task to
compute exact simultaneous multiple forecast
limits for Gaussian autoregressive models is of-

models [Box and Jenkins, 1976] has been rea-
sonably successful as a practical tool for busi-
ness forecasting. However, substantial empirical
evidence for non-normalities in economic time
series fluctuations has been reported in the lit-
erature recently. Computing simultaneous in-
terval forecasts based on the Gaussian assump-
tion could be misleading. Instead of assuming
a normal distribution, some authors have pro-
posed to estimate the density of the forecast
errors by bootstrap procedures. These include
Thombs and Schucany [1990], Masarotto [1990],
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and Cao et al. {1997]. However, their methods
concentrate on the construction of the predic-
tion interval of a single forecast. In this paper,
we attempt to generalise these methods to the
computation of simultaneous prediction inter-
vals.

2. MODEL AND NOTATIONS

Suppose that a discrete time real-valued series

Z; has the stationary AR(p) representation:
¢(B)Z; =6+ a: 1)

where § is the intercept term,

¢(B)=1-¢B—...— $,B”

is the AR polynomial with roots outside the
unit circle and have no common factors, B is
the backwards shift operator such that B™Z; =
Zi—m, and {a;} is a sequence of uncorrelated
random variables from a distribution F, with
mean zero and finite variance o2.

Consider a time series with available observa-
tions {Z;,t = 1,...,n}. The minimum mean
square error (MMSE) forecast under model (1)
at origin n for lead time [ is given by

Zn(l) = 6+¢lzn(l_ 1)+' ) '+¢PZn(l_p)’ (2)

where Z,(8) = Zn+, if $ < 0. The correspond-
ing I-step ahead forecast error e, (1) is

e,.(l) = Zn+l - Zn(l)’

which has mean zero and

I
Var [en ()] = o7 i Y. 3)

i=0

The 1 weights are functions of the model pa-
rameters and they can be obtained recursively
by Y& = St Yidk—: with 9o =1, and ¢; =
0if j > p. When {a;} is a Gaussian white
noise process, Z,(l) is normally distributed
with mean Z,,,; and variance Var [e;(!)]. The
100(1 — a)% prediction interval for a single I-
step-ahead forecast is given by

Zﬂ(l) + 2a/2V Var [en(l)] (4)

where z,/, is the upper a/2 percentage point
of the standard normal distribution. In prac-
tice the model parameters 6, ¢1,...,¢p and o2
are not known and they are usually replaced by
their estimates [Box and Jenkins, 1976, Ch. 5].

For multiple forecasting, we need to produce
prediction intervals for {Z;4,l = 1,...,L} si-
multaneously. If the 100(1 — a)% marginal pre-
diction interval (4) is used for each of the fore-
casts, the joint confidence level may be very

small, especially when L is large. Hence, we
should seek for the construction of simultane-
ous prediction intervals of {Z,4+;,l = 1,...,L}
such that the overall joint confidence level is
controlled at a designated level 1 — a.

In the next section the existing procedures
for constructing simultaneous prediction inter-
vals for Gaussian autoregressive processes are
briefly reviewed. Generalisation of the boot-
strap methods by Thombs and Schucany [1990],
Masarotto [1990], and Cao et al. [1997] are also
presented. In Section 4 all the methods are il-
lustrated and compared through several macro-
economic real examples. Discussion and recom-
mendations follow in the final section.

3. CALCULATING SIMULTANEOUS
PREDICTION INTERVALS

3.1 Existing Methods for Gaussian Pro-
cesses

Bhansali [1974] considers a conservative method
to construct the simultaneous prediction inter-
vals, which are based on the first-order Bon-
ferroni inequality. The 100(1 — @)% conserva-
tive simultaneous forecast limits for Z, (I =
1,...,L) are

Zn(l) £ 2420y Var [en (). (5)

The intervals in equation (5) are conservative,
in the sense that they provide a joint confidence
level of at least 1 — a..

Under the natural ordering condition, Ravis-
hanker et al. [1991] improve the simultane-
ous prediction intervals (5) using the kth-order
Bonferroni inequality. In previous published
work on this method, the choice of & was al-
ways less than 6 due to computational limita-
tions. Imposing an additional condition, Glaz
and Ravishanker [1991] derive another approx-
imate method for calculating the intervals us-
ing the kth-order product-type inequality. They
also show that the product-type intervals are
tighter than the Bonferroni bounds. Unfortu-
nately, the conditions required by these higher
order approximation procedures are either im-
practical or extremely difficult to be verified
[Cheung et al., 1998].

The Ezact Method (EX)

Assuming Gaussian errors, the 100(1 — a)% ex-
act simultaneous prediction intervals for Z,,,
l=1,...,L are

Zn(l) £ €a/ Var [en ()] (6)
forl=1,...,L. Let

1508



with
en(l)
v/ Var [en(1)]
denoting the standardised forecast errors. Then

the value of &, is the solution of £ for the fol-
lowing equation:

N =

H (E) =1- a, (7)
where (N1, MNs,...,N1) have a multivariate nor-
mal distribution with mean vector 0 and corre-
lation matrix ¥ = {ppy}, 1 < m, | < L. In
addition, for m <, it is easy to show that

-1
Yoo Yititi-m

JER e

Note that if the model parameters in (1) are un-
known, they will be replaced by the estimates
and ¥ can then be computed numerically using
(8).

Given a and X, we may use the secant method
to solve the equation (7) for £,. However, it re-
quires the evaluation of an L-dimensional multi-
variate normal probability (i.e., the H(£) func-
tion) many times. For large L, it was computa-
tional infeasible in the past. Recently, Cheung
et al. [1998] propose an efficient algorithm to
perform such calculations. The required com-
puting times for their method are fairly accept-
able (less than 30 CPU seconds) for L as large as
20. In this paper, we shall employ their method-

ology.
3.2 Modified Bootstrap Methods

The procedures described in the previous sec-
tion assume that the errors have a Gaussian
distribution. However, non-normality in resid-
uals is often detected in economic time series
model fitting. To tackle the problem, Peters
and Freedman [1985] derive a procedure which
is based on the bootstrap of the residuals. Li
and Maddala [1996] provide an excellent review
of bootstrap methods applied to linear time se-
ries analysis.

®)

Pml =

Several authors employed the bootstrap method
to generate prediction limits for a single fore-
cast.  Masarotto [1990] (henceforth MAS)
presents a bootstrap method using the empirical
distribution of the residuals. Fixing the model
parameters, bootstrap samples of the standard-
ised prediction errors can be obtained. Then,
the prediction interval is computed using the or-
dered bootstrap replications. Masarotto [1990]
proves that this interval is consistent, in the
sense that it gives a correct asymptotic coverage
probability under some reasonable assumptions.
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Thombs and Schucany [1990] (henceforth TS)
consider a bootstrap method to construct the
prediction interval of a single forecast from an
autoregressive model. Bootstrap replicates gen-
erated backward in time are used to ensure that
the probability distribution for future values of
the process is conditional on the past observa-
tions. Furthermore, model parameters are re-
estimated in each bootstrap replicate. It allows
for estimation uncertainty when parameters are
estimated by ordinary least squares (OLS).

Cao et al. [1997] (henceforth CAQ) propose
a simplification of the Thombs and Schucany’s
method. The model parameters are only esti-
mated once and these estimates are used in the
computation of all bootstrap forecasts. Also,
the CAO procedures only resample the future
values. Although this method does not account
for the uncertainty due to parameter estimation,
Cao et al. [1997] claim that it still provides sat-
isfactory results most of time with a substantial
reduction in computing efforts as compared to
the TS procedure.

In this section we shall generalise the MAS, TS
and CAO methods to construct simultaneous
prediction intervals for an autoregression by ap-
plying the first-order Bonferroni inequity. For
the MAS, TS and CAQO procedures, the order
of the AR model p is assumed to be known.
However, in practice, the model order is seldom
known. Following Grigoletto [1998], we shall
use the Akaika Information Criterion (AIC) to
determine the model order for a given time se-
ries. In other words, the order p will be substi-
tuted by p which minimises

AIC(p) = nlogé? + 2p 9)
where 42 is the estimate of 02 based on an
AR(p) model, p = 0,1,...,P and P is a pre-
assigned upper limit of the order of the autore-
gression. Note that the values of  based on
the original series and each of bootstrap repli-
cations may be different. The detailed steps of
each generalised bootstrap method are outlined
in what follows.

The Generalised MAS Method (GMAS)

1. Obtain  the least square estimates
(67¢11"'1¢P)'

2. Compute the future values Zn(l), | =
1,2,...,L.

. Construct F, by computing the centred and
rescaled forward residuals:

n—p 1/2
& = (n—2p) G =




The

. Obtain  the

where

bi=2Zi—b—$p1Zioy —-- — $pzi-p7
for 4 =n,n—1,‘...,p+ 1.
Generate a bootstrap replicate

{Z;) e )Z:n Z:l.+11 R 7Z:l.+L}

from

Z}=8+Z 1+ +$pZi_p +4,,
for s =1,2,...,n+ L where {&;"} are boot-
strap errors from F,.
Compute (8*,9%,...,45), 62* and ¢}'s us-
ing the bootstrap sample {Z7,...,Z;}. and

compute the bootstrap future values Z (l) for
1=1,2,...,L by

Zn) = & +¢iZn-1)+--
+632:(1 - p),
where 2,‘,(.9) =Zn4, if 8 <0.
Compute r;, (1) by
et = Za(l)
CH=r ok

forl=1,2,...,L.

ra) =

. Repeat Step (4) to (6) until B sets of boot-

strap replicates r;(l) for [ = 1,2,...,L are
obtained

. The 100(1 — a)% simultaneous forecast limits

for {Zp+1},1=1,2,...,L are given by
5 2501 22) Y2 *(q)
Z.0)+ (2L ) 0,

= \1/2

2.+ (2 ) o),
where ¢ = [B (%) + 1] and
Fr),...,r2® (1)} are the ordered boot-

strap replications of the standardized forecast
errors for [ =1,2,...,L.

Generalised TS Method (GTS)

least square estimates

(81 J’l)' . "¢?P)'

. Compute centred and rescaled backward

residuals:
1/2 n—p
o= (L&) (éi __1 éj) ,
n —2p n—p
i=1
where
&i=2Zi—8—$:1Ziy1— - — ¢pZitp,

fori=n—pn—p-1,...,1. Let F. be
the empirical distribution of the centred and
rescaled backward residuals.

. Randomly draw {é:"', i=1,...,n—p} from

F., and obtain the backward bootstrap repli-
cate {Z7,...,2;} where Z} = Z;, for i =
n—p+1,...,n,and Z =6+ 12}, + -+
$,Z;+p+é;', fori=1,...,n—p.

4. Fit the backward bootstrap replicate to an
AR(p) model and obtain the least square es-
timates (0%, ¢5,...,¢p)-

5. Compute centred and rescaled forward resid-

uals:
1/2 n
N - . 1 .
0= (i) (i S0)
2 P j=p+1
where
bi=2Zi-8—$p1Zi1 — - — $pZi_p,

fori=n,n—1,...,p+1. Let F, be the empir-
ical distribution of the centred and rescaled
- forward residuals.

6. Draw forward bootstrap errors {&;-*, j=
n+1,n+2,...,n+ L} from F, and com-
pute recursively the bootstrap future val}les:

MVE IR TP ANRIRE SERS o ARTES T Sp
forl=1,2,...,L.

7. Repeat Step 3 to 6 B times.

8. The 100(1 — @)% conservative simultaneous
prediction intervals for {Z,4},1=1,2,...,L

would be
w *(B+1—
[Zn$1) ’ Zn+l q)] L
where ¢ = I'B (.%L) + 1] and
(Z;g,) N - .,Z;Sg)) are the ordered bootstrap

future values for | = 1,2,...,L. The [-]
denotes the greatest integer function.

The Generalised CAO Method (GCAO)

This is a simplification of the GTS method.
Steps 2 to 4 of GTS are skipped and the pa-
rameters in step 6 are not re-estimated.

4. CASE STUDIES

In this section we apply all these procedures
to several macro-economic time series. The
first series (Series A) is the quarterly US GDP
growth rates (DGy). It is defined as the log-
arithmic difference of the real (in 1996 con-
stant dollars), seasonally adjusted US GDP se-
ries from 1947.1 to 2000.4 giving 215 observa-
tions in total. An AR(1) process is fitted to
the data: DG; = .5647 + .3410DG;_1 + a:
with 6, = .9625. Series B is the quarterly
Australian Money Supply (M3) growth rate se-
ries from 1971.4 to 2001.1 (n = 118). The se-
ries (MG}) is in current prices and seasonally
adjusted. An AR(1) process is fitted to the
data: MGy = 1.4322 + .4819DG;_; + a; with
6, = 1.3849. Series C is the quarterly growth
rate of Melbourne/Westpac Leading Index of
Economic Activity (LG:) from 1971.4 to 2001.1
(n = 118). An AR(2) process is fitted to the
data:

1510



Table 1. Four Quarterly Interval Forecasts (in per cent) using Various Methods

Gaussian
Method Bootstrap Methods
Series [ EX GCAO GMAS
A 1" (-1.70, 3.07) (-2.05, 3.74) (-2.06, 3.24) (-2.19, 3.42)
2 (-1.72, 3.32) (-1.70, 4.08)  (-1.90, 4.18)  (-1.58, 4.22)
3 (-1.70, 3.37) (-1.76, 3.96)  (-1.67, 4.05)  (-1.94, 4.55)
4 (-1.69, 3.39) (-1.93, 4.12)  (-1.94, 4.27)  (-1.77, 4.30)
B 1 (-0.43, 6.39) (-0.56, 9.75)  (-0.59, 9.78)  (-0.61, 9.40)
2 (-0.92, 6.66) (-0.91, 9.33) (-0.93, 9.15)  (-1.06, 9.63)
3 (-1.05, 6.68) (-1.05, 9.27)  (-0.91, 9.16)  (-1.20, 8.53)
4 (-1.10, 6.68) (-1.09, 9.28)  (-1.03, 9.35)  (-1.09, 9.63)
[¢] 1 (-2.91, 4.52) (-2.56, 3.75)  (-5.74, 3.62) (-6.19, 3.84)
2 (-3.67, 5.24) (-3.13, 5.05)  (-4.71, 4.48)  (-5.52, 4.51)
3 (-3.90, 5.30) (-6.78, 5.25)  (-6.66, 4.50)  (-7.38, 4.92)
4  (-8.97,5.27) (-4.37, 4.56)  (-5.40, 4.55)  (-6.14, 4.65)
D 1 (-5.54, 4.85) (-6.81, 5.24)  (-5.50, 5.21)  (-5.79, 5.44)
2 (-4.38, 7.46) (-4.89, 7.84)  (-4.95, 7.55) (-5.07, 7.72)
3 (-5.61, 6.63) (-6.43, 6.89)  (-5.65, 6.85)  (-6.10, 7.28)
4  (-5.11, 7.25) (-5.63, 8.07)  (-5.61, 7.27)  (-6.18, 7.51)

LG: = 2908 + .6611LG;—1 — .1311LG;—5 + a;
with , = 1.5199. Series D is the quarterly Aus-
tralian Government Final Consumption Expen-
diture (General) growth rate series (CG;). The
series is in current prices, seasonally adjusted
from 1971.4 to 2001.1 giving a total of 118 ob-
servations. A first-order autoregression is fitted
to the data: CGy = 1.3476 — .5454CG_1 + as
with 8, = 2.1111. Four quarterly simultaneous
prediction intervals for these series by various
methods are computed at the 95% confidence
level. The results are given in Table 1.

Boxplots for the standardised residuals from
each fitted models are displayed in Figure 1. A
boxplot is a way to look at the overall shape of
a set of data. The central box shows the data
between the ‘hinges’ (roughly quartiles), with
the median represented by a line. ‘Whiskers’ go
out to the extremes of the data, and very ex-
treme points are shown by themselves. Formal
tests for normality by Jarque and Bera [1980]
are applied to the residuals. The test statistics
are 21.14 (0.0000) for Model A, 107.03 (0.0000)
for Model B, 3.89 (0.1430) for Model C, 0.80
(0.6703) for Model D, with the corresponding
p-value given in parenthesis. Residuals from the
fitted AR(1) model of Series D are fairly close
to normal. The widths of the intervals obtained
from the EX method and the bootstrap meth-
ods are very similar (the ratios range from 86%
to 98%).

For Series A, the empirical distribution of the
residuals is quite symmetric, with several outly-
ing values observed at both ends (see Figure 1).
The bootstrap methods adopt these non-normal
characteristics and produce prediction intervals
with wider widths (but still fairly symmetrical
around the forecasts) as compared to those ob-
tained from the EX method. The width ratios
are ranging from 78% to 90%.

Figure 1 shows that the residuals obtained from
the fitted model for Series B are asymmetric,
with extreme values concentrated on the pos-
itive end. From Table 1, we can see that the
bootstrap methods automatically respond to
this special feature of the error distribution and
give higher (as compared to the EX method,
which assumes a normal error distribution) up-
per limits for the forecasts. The width ratios
are ranging from 66% to 79%.

For Series C, there is one large negative outlier
in the residuals. The bootstrap methods have
made allowance for the extreme value. Their
lower bounds are much lower than those calcu-
lated from the Gaussian EX method. The width
ratios (the EX method to the bootstrap meth-
ods) range from 74% to 118%.

The case studies in this section show that non-
normal residuals are not uncommonly encoun-
tered in economic time series modelling. The
bootstrap methods proposed in this article re-
spond reasonably well to different non-Gaussian
situations. On the contrary, simultaneous pre-
diction intervals produced by the EX method
under the normal assumption could be mislead-
ing in many practical cases.

-
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Figure 1. Boxplots for the standardised residuals
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DISCUSSION AND RECOMMEN-
DATIONS

Clements and Taylor [2001] consider a proce-
dure to bias-correct the parameter estimates via
bootstrap. By simulation, they show that boot-
strap methods applied with a correction for es-
timation bias has significant improvement on
the coverage probability when the sample size
is small (say, n < 50). However, in practice,
we seldom make long-range (i.e., large L) mul-
tiple interval forecasts using a short time series.
Therefore, we did not consider their method in
this paper.

Au [2000] compares the methods of construct-
ing simultaneous prediction intervals discussed
in this article through a simulation study. His
conclusions are summarised as follows: (1) For
non-Gaussian error situation, the EX method is
not recommended; (2) For the EX procedure,
the experimental joint coverage percentages are
less than the nominal level even in the Gaussian
cases. It might due to the parameter uncer-
tainty problem as discussed in Chatfield [1993];
(3) The MCAO method, being a simplification
version of the GTS procedure, surprisingly per-
formed better than the GTS method in most
non-normal cases considered in the experiment;
and (4) The GMAS procedure is preferred for
all kinds of distributions, especially the normal
mixture one.

5.

Based on Au’s simulation experiment and the
empirical experience in this article, we recom-
mend the GMAS method for constructing si-
multaneous prediction intervals. It does not de-
pend on the Gaussian assumption. The method
also accommodates quite well the model and pa-
rameter uncertainties.

Even though our discussion in this paper mainly
concerns autoregressive processes, our proposed
ideas of generalisation can be easily adopted
by other bootstrap methods for models with
moving-average or nonlinear components [see,
e.g., Pascual et al., 2001].
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